On Julia Set of the Functions Which Have Parabolic Fixed Points
نویسندگان
چکیده
In the present article, functions with parabolic fixed points are examined and Julia sets have been investigated, including rotational symmetry revealing. Collections of which lines rays as sets, adduced. Construction algorithms for some a number results obtained by analytical investigations visualised means computer programs, described. Comparison holomorphic dynamics collection point, attracting has conducted.
منابع مشابه
On the Set of Fixed Points and Periodic Points of Continuously Differentiable Functions
The set of periodic points of self-maps of intervals has been studied for different reasons. The functions with smaller sets of periodic points are more likely not to share a periodic point. Of course, one has to decide what “big” or “small” means and how to describe this notion. In this direction one would be interested in studying the size of the sets of periodic points of self-maps of an int...
متن کاملOn the existence of fixed points for contraction mappings depending on two functions
In this paper we study the existence of fixed points for mappings defined on complete metric spaces, satisfying a general contractive inequality depending on two additional mappings.
متن کاملOn Ideals Which Have the Weakly Insertion of Factors Property
A one-sided ideal of a ring has the insertion of factors property (or simply, IFP) if implies r for . We say a one-sided ideal of has the weakly IFP if for each , implies , for some non-negative integer . We give some examples of ideals which have the weakly IFP but have not the IFP. Connections between ideals of which have the IFP and related ideals of some ring extensions a...
متن کاملOn Fixed Points of Strictly Causal Functions
We ask whether strictly causal components form well defined systems when arranged in feedback configurations. The standard interpretation for such configurations induces a fixed-point constraint on the function modelling the component involved. We define strictly causal functions formally, and show that the corresponding fixed-point problem does not always have a well defined solution. We exami...
متن کاملMost Homeomorphisms with a Fixed Point Have a Cantor Set of Fixed Points.
We show that, for any n ≠ 2, most orientation preserving homeomorphisms of the sphere S2n have a Cantor set of fixed points. In other words, the set of such homeomorphisms that do not have a Cantor set of fixed points is of the first Baire category within the set of all homeomorphisms. Similarly, most orientation reversing homeomorphisms of the sphere S2n+1 have a Cantor set of fixed points for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Sciences
سال: 2023
ISSN: ['1072-3374', '1573-8795']
DOI: https://doi.org/10.1007/s10958-023-06300-9